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EXECUTIVE SUMMARY

Vulnerability to climate change impacts of rice and coconut systems in the province of Basilan
were assessed using the Climate Risk Vulnerability Assessment (CRVA) framework of the
Department of Agriculture — Climate Resilient Agriculture Office (DA-CRAQO). An automated
system for operationalizing the CRVA framework was developed and utilized in generating the
CRVA maps. Data for the major components of vulnerability — exposure, sensitivity, and
adaptive capacity for the 40 municipalities in Lanao del Sur were collected using available
secondary sources and through participatory workshops with Municipal Agriculture Officers
(MAOSs) in the province. All the data collected were preprocessed, standardized, and utilized
as inputs to the Automated CRVA Tool. The automated system was used to produce the
sensitivity, hazards, adaptive capacity, and overall vulnerability shapefiles for map generation.
Final maps, including intermediate results for hazards and adaptive capacity, were generated
using QGIS.

Analysis of the CRVA maps revealed that the majority of the rice and coconut areas in Basilan
have high vulnerability to climate change impacts. Specifically, results showed that:

e Most areas in Basilan are susceptible to landslides, erosion, and storm surge.

e [Future projections using the RCP 8.5 scenario (high emission scenario) showed that
Basilan will have a more conducive environment for rice cultivation in the future. On
the other hand, the majority of the coconut production areas in the province are
projected to have a decrease in suitability. Aside from bioclimatic factors, results of the
sensitivity analysis also suggest that topographic parameters such as elevation may
also explain changes in suitability of rice and corn in the province.

e Municipalities in Basilan generally have low adaptive capacity because of limited
human, institutional, and physical capitals.

e Overall indices showed that 75% and 83% of rice and coconut production areas in
Basilan, respectively, have high to very high vulnerability to climate change impacts.

Given the results of the assessment, climate-resilient adaptation options were also provided
to serve as a guide in developing investment plans and programs to help rice and coconut
farming communities in the province reduce their vulnerability. These include the adoption of
sustainable agricultural practices, integrated land use management, and nature-based
solutions (NbS).

Agricultural planners are encouraged to use the CRVA maps as guide in targeting areas most-
at-risk to climate change impacts. Likewise, it is envisioned that the results of the assessment
shall be utilized in creating an enabling environment that will support farmers not only in
managing climate risks, but more importantly in sustaining their livelihoods.



1. INTRODUCTION
1.1. Rationale

Climate change and variability continue to exert increasing pressure upon the agricultural
sector of the Philippines. Projected climate change impacts will continue to reduce long-term
economic growth in the country by 0.02% per year, which equates to a 3.8% reduction in
Gross Domestic Product (GDP) by 2050 (Rosegrant et. al., 2015). Hence, a better
understanding of major agricultural vulnerabilities to climate risks is fundamental to achieving
more resilient farming systems, especially among poor rural households. Therefore, as a first
step, identifying and prioritizing crops that are most vulnerable to climate risks is necessary at
a high-resolution scale. In this context, the progressive building of resilience is an intermediate
outcome contributing to improve communities' coping capacities to a high degree of climate
risks (Béné et al., 2015).

The Department of Agriculture (DA) launched the Adaptation and Mitigation Initiative in
Agriculture (AMIA) program in 2014 as the flagship program of the Department to address the
impacts of climate change on the agriculture and fisheries sector. As its overall approach,
AMIA develops and promotes climate-resilient agriculture (CRA) by applying innovative
technologies and practices, introducing institutional and social reforms, and accessing
climate-relevant support services.

To target the most vulnerable areas in the country, a Climate Risk Vulnerability Assessment
(CRVA) tool was developed through the AMIA program. The CRVA tool helps define priorities
and design targeted solutions for the most vulnerable populations based on the expected
impacts from climate change and capacities for adaptation. Results of the CRVA can be
integrated into broader development approaches for agenda setting, program planning, and
investment prioritization. Specifically, it can be used for policy analysis and formulation for
national/sub-national development plans; local-level vulnerability assessment by
communities, government agencies, and other stakeholder groups; participatory
assessments; and investment prioritization for potential actions and interventions in climate
adaptation and mitigation.

The Asian Development Bank, through NIRAS, implemented the Technical Assistance project
titted “Accelerating Climate Resilience in Agriculture, Natural Resources, and the
Environment”, to strengthen the Philippine’s legal, policy, and institutional frameworks for
climate adaptation and resilience in the agricultural and environmental sectors. The project
was implemented in close collaboration with the Department of Agriculture Climate Resilient
Agriculture Office (DA-CRAQ). The project aimed to support DA-CRAO in preparing CRVA
maps for priority crops in the six (6) provinces of the Bangsamoro Autonomous Region of
Muslim Mindanao (BARMM) following the AMIA CRVA framework. Additionally, the project
pioneered the development of an automated system for operationalizing CRVA for crops which
was utilized in generating the CRVA maps for BARMM.

Specifically, this report covers the results of the CRVA for identified priority crops in the
province of Basilan and the potential management strategies to address the adverse climate
change impacts in the province.

1.2. Objectives

Given these contexts, this study aimed to assess the climate risk vulnerability status of rice
and coconut in a geospatial landscape at the municipal level in the province of Basilan.
Specifically, it aimed to integrate spatial and secondary data clustered under the three major
components of vulnerability/sensitivity, exposure, and adaptive capacity, to produce maps that
serve as the basis for developing CRA-related decision support tools and recommended
guidelines for disseminating climate-related information services, among others.



2. METHODOLOGY
2.1. Study Area

Basilan is one of the six provinces of the Bangsamoro Autonomous Region of Muslim
Mindanao (BARMM). It is composed of 11 municipalities and one (1) independent city (City of
Isabela) (Figure 1). The capital of the province is the city of Isabela. Basilan has a land area
of 3,453.42 km? and a total population of 426,207 based on the 2020 Census of Population of
the Philippine Statistics Authority (PSA).

Figure 1. Location map of Basilan
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2.2. Agriculture in Basilan

As of 2022, the agriculture and fisheries sector of Basilan had an estimated value of
P11,975,000,000 — a remarkable 23.8% growth from the previous year (PSA, 2023). This
constitutes 0.52% of the total Philippine Agriculture and Fisheries production value.

According to the 2012 Census of Agriculture and Fisheries, there are 222,493 agricultural
workers in the province aged 10 and above, which makes up 0.26% of the overall agricultural
workforce in the Philippines (PSA, 2020).

According to PhilRice, Basilan has a total rice area of 312 hectares as of 2023, producing
around 703 metric tons of rice - a 0.3% decrease in production from the previous year
(PhilRice, 2023).

In 2018, the province had a total area of 63,700 hectares for coconut production, which
produced 49,154 metric tons of coconut during the year. Basilan makes up 0.3% of the
national coconut production in the Philippines (Philippine Coconut Authority, 2018).

The agricultural sector of the province has experienced a variety of problems brought about
by natural disasters and pest infestations in the last 10 years. This includes the “cocolisap”



outbreak in 2016 (Philippine Daily Inquirer, 2016), droughts leading to the declaration of a
state of calamity in 2019 (Falcatan, 2019), and the recent floodings due to the shear line in
2022 (GMA Integrated News, 2022).

2.3. Conceptual Framework

The CRVA framework used for the study was adapted from the International Center for
Tropical Agriculture (CIAT, n.d.) as shown in Figure 2.

Figure 2. DA-AMIA CRVA framework for crops
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The CRVA framework developed for DA was based on the Intergovernmental Panel on
Climate Change (IPCC) Assessment Report 4 (AR4) which defines vulnerability in terms of:
Exposure to climate-induced shocks (a biophysical phenomenon); Sensitivity of the unit to
such shocks; and the Adaptive Capacity to deal with such shocks. Each of the dimensions
and indicators is used to assess the vulnerability of each municipality within a province. The
components of vulnerability are further defined as:

e Sensitivity: The increase or decrease of climatic suitability of selected crops to changes
in temperature and precipitation (Parker et al., 2019).

o Exposure: The nature and degree to which a system is exposed to significant climate
variations (IPCC, 2014).

e Adaptive Capacity: The ability of a system to adjust to climate change (including
climate variability and extremes) to moderate potential damages, to take advantage of
opportunities, or to cope with the consequences (IPCC, 2014).

2.3.1. Sensitivity

The sensitivity of crops to changes in temperature and rainfall was measured by analyzing
climate suitability by the year 2050 vis-a-vis the baseline (current) condition. The difference,
expressed as a percentage, in future and baseline suitability determines the change in crop
climate suitability and reflects the degree of crop sensitivity to changing environmental
conditions (see Equation 1). Negative values reflect negative impact or decrease in suitability,
while positive values reflect positive impact or gain in suitability in the future.

Sens = Future—B ?sefme x 100
( 1) Baseline
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Species Distribution Modelling (SDM) using the Maximum Entropy (MaxEnt) model® was
employed in the study to analyze climate suitability of the selected crops. The model requires
climate and crop occurrence data in order to predict the potential geographic distribution of
the crops and generate the suitability maps (baseline and future).

A total of 19 bioclimatic variables (Annex 1) from WorldClim (https://www.worldclim.org/) with
a spatial resolution of about 1 km? (or 30 arc-seconds) was used to run the model and generate
the baseline suitability of the selected crops. These bioclimatic variables are gridded climate
data derived from monthly temperature and rainfall values and were processed to generate
more biologically meaningful climate variables (Hijmans et al., 2005; Apdohan et al., 2021).

On the other hand, thirty-three (33) Global Circulation Model (GCMs) (Annex 2) based on
Coupled Model Intercomparison Model (CMIP) 5 under the Representative Concentration
Pathway (RCP) 8.5% scenario was used to run the model and generate the suitability of the
selected crops by year 2050 (future). These climate data was processed and downscaled
(same resolution as WorldClim) by CIAT using the method of Ramirez-Villegas and Jarvis
(2010) and can be downloaded from the Climate Change and Food Security website
http://www.ccafs-climate.org/data_spatial downscaling/.

As mentioned, another input to the model is the crop occurrence data which identifies the
presence of a specific crop within a geographic area. There are several methods to generate
the crop occurrence data such as collecting points on the ground using participatory mapping
approach and/or the use of satellite images via remote sensing. Specific methodology used
for the study is presented in Section 2.4.

The resulting baseline and projected crop suitability data (in raster format) from the MaxEnt
model were used as inputs to obtain the difference of the values in each pixel to measure the
change in suitability. The resulting pixel values range from negative to positive values, and
were converted into an index, which serves as the basis for assessing the impact of climate
change. As shown in Table 1, the index ranges from -1.0 to 1.0 wherein 0.25 to 1.0 indicate a
decrease in suitability, while -0.25 to -1.0 indicate a gain in suitability, and zero indicates no
change in suitability (Palao et al., 2016).

1 Maximum entropy modeling (MaxEnt) “uses techniques developed from machine learning, allowing empirical
data to be used to predict the probability of finding something under certain conditions distributed in space” -
Dudik, M., S. J. Phillips,and R. E. Schapire. 2007. Maximum entropy density estimation with generalized
regularization and an application to species distribution modeling. Journal of Machine Learning

Research 8: 1217-1260.

2 The RCP 8.5 scenario was used in the analysis because climate risks tend to rise in extremely high emission
scenario and temperature conditions (Katzfey, 2015). It represents potentially high greenhouse gas emission levels
in the atmosphere and the subsequent increase in solar energy that would be absorbed (radiative forcing) (IPCC
AR5, 2014). Under RCP 8.5, the projected increase in temperature is +1.4 — 2.6 degree Celsius (°C) for the mid-
century and +2.6 — 4.8°C for the end of the century (IPCC, 2013). Compared to other scenarios, the RCP 8.5
provides emphasis on risk assessment by providing understanding of the upper limits of potential climate change
impacts that can contribute to policy and decision-making.
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Table 1. Sensitivity index based on percent change of crop suitability from baseline to future

conditions

Percent Change in Suitability (Range in %)

Description

< -50 (High decrease) 1.0

> -50 < -25 (Moderate decrease) 0.5 Decrease
> -25 < -5 (Low decrease) 0.25

> -5 <5 (No change) 0 No Change
> 5 < 25 (Low gain) -0.25

> 25 < 50 (Moderate gain) -0.5 Gain

> 50 (High gain) -1.0

2.3.2. Exposure

Eight (8) natural hazards were used to assess the exposure of the province to climate-induced
shocks (a biophysical phenomenon). These hazards were obtained from historical data of
different databases, as listed in Table 2. The set of hazard weights® presented in Table 2 was
also used to reflect the relative impact of each hazard.

Hazards

Table 2. Hazard dataset used for exposure assessment

Description

Weights %
(CIAT, 2017)

Typhoon Typhoon incidence based on frequency | UNEP/UNISDR 16.95
Flood Identifies areas at different levels of risk | DENR-MGB 15.25
Susceptibility | to flood based on physical
characteristics
Drought Identified areas at risk to agricultural AMIA 16.95
drought based on physical
characteristics
Erosion Identifies areas at different levels of risk | BSWM 12.71
to erosion based on physical
characteristics
Landslide Identifies areas at different levels of risk | DENR-MGB 14.41
to landslide based on physical
characteristics
Saltwater Identifies areas that are potentially NWRB 10.17
Intrusion affected by saltwater intrusion based on
ground water potential
Sea Level Rise | Identifies areas that can be potentially AMIA 5.08
affected by sea level rise
Storm Surge Identifies areas that are potentially DOST 8.47
affected by storm surge based on

3 The hazard weights in Table 2 were developed by the International Center for Tropical Agriculture (CIAT)
through a workshop participated by State Universities and Colleges (SUC) experts and Department of Agriculture
(DA) focal persons. Specific weights per island group (Luzon, Visayas, and Mindanao) were generated, and the
weights presented in Table 2 were for Mindanao. The probability/impact of the hazard risk was measured from a
semi-quantitative assessment by scoring different sets of criteria: 1) frequency of occurrence, 2) impact of local
household income, 3) impact to key natural resources to sustain, 4) impact to food security of the country, and 5)
impact to national economy.

12



The analysis of hazards was limited to baseline conditions because many climate-induced
natural hazards occur in large-scale singular events, and projection to the year 2050 may
add further layers of uncertainty. Each hazard dataset was in the form of a raster file. To
standardize the raster files, the pixels were aggregated for each municipality using the zonal
statistics tool in QGIS and selecting mean or sum as the basis for data aggregation (Palao et
al., 2016).

After employing zonal statistics, the spatially-weighted sum of the eight (8) hazards was used
to develop the hazard index for each municipality. The weighted sum was normalized using
equation 2 to standardize the value from O to 1, creating the hazard index.
Five equal breaks were used to classify the hazard index into: 0-0.20 (Very Low), 0.20-0.40
(Low), 0.40-0.60 (Moderate), 0.60-0.80 (High), and 0.80-1.00 (Very High).

(2)

. X— X
hazidx norm = e

Xmax— Xmin

2.3.3. Adaptive Capacity

Adaptive capacity forms one of the pillars of vulnerability which measures the ability of a
system to deal with climate change-induced shocks. In the process of developing the adaptive
capacity index, a diverse range of locally compiled data were used including socio-economic
factors, institutional capabilities, and agricultural data. These datasets were categorized into
seven capitals to provide a more comprehensive lens of a system’s strengths and
weaknesses. These include: Anticipatory, Economic, Human, Institutional, Natural, Physical,
and Social capitals.

Anticipatory Capital refers to the ability of a system to anticipate and minimize negative
impacts of climate hazards through foresight, prior planning, and preparation. This capital
includes indicators related to information dissemination, forecasting, and building capacity and
awareness of local stakeholders related to climate change. Economic capital includes
indicators which relate to economic assets and financial resources, which local citizens may
tap to bear the costs of adaptation to climate-related hazards and impacts. This capital
includes existing financial institutions and local economic activities and conditions in the
city/municipality. For this assessment, Human Capital pertains to education and health
sectors. It includes indicators which measure the available manpower in the city/municipality
and resources which can support human well-being as well as development of knowledge and
skills of local citizens. Institutional Capital refers to established mechanisms within the local
government which can support and facilitate management, development, and implementation
of climate change-related activities. Physical Capital, on the other hand, includes
infrastructure-related indicators, as well as facilities which sustain operation and flow of
activities within the city/municipality. Lastly, Social Capital relates to farmer organizations and
gender-related factors and considerations.

The composite index for each capital was constructed by averaging the normalized values of
all the indicators. The composite adaptive capacity (AC) index is derived using the sum
function of all capital indices which were normalized and treated with equal weights. Five equal
categories were developed to establish the thresholds: 0-0.20 (Very Low), 0.20-0.40 (Low),
0.40-0.60 (Moderate), 0.60-0.80 (High), and 0.80-1.00 (Very High).

Vulnerability Index. The vulnerability of each municipality is expressed as the weighted sum
of the potential impact (i.e., sensitivity and exposure to hazards as presented in Figure 2),
weighted at 30%, and the inverted adaptive capacity index, weighted at 70%. These
percentages were based on the other CRVAs completed by the DA-AMIA program,
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highlighting the importance of building a strong capacity of the province to moderate the
impacts of climate change. The values obtained were normalized linearly from an interval of 0
to 1 using Equation 2. Based on the minimum and maximum values, the municipalities were
classified from very high to very low using five (5) equal breaks: 0-20 (Very Low); 20-40 (Low);
40-60 (Moderate); 60-80 (High); and 80-100 (Very High). Figure 3 illustrates how the different
dimensions of vulnerability are integrated to produce the final vulnerability index.

Figure 3. Integration of the three key dimensions of vulnerability

Sensitivity (change in crop suitability) (15%)

} Potential Impact
Exposure (hazard risk) (15%) i

Adaptive Capacity (70%) ==================- +

Vulnerability Index

2.4. Data Collection and Validation
2.4.1. Crop Occurrence Data

As mentioned in the previous section, one of the inputs of the MaxEnt model is crop
occurrence data. The use and analysis of satellite images via remote sensing and the
participatory mapping approach were both utilized in this project.

The crop occurrence data were initially mapped by collecting crop presence points via remote
sensing by leveraging Google Earth Engine (GEE), a powerful cloud-based platform for
planetary-scale environmental data analysis. This platform utilizes a multi-petabyte catalog of
satellite imagery and geospatial datasets, enabling analysts to detect changes, map trends,
and quantify differences on the Earth's surface. Using GEE, the team was able to efficiently
access and process large volumes of satellite images to identify areas of crop cultivation in
the region. The process involved selecting specific satellite data that provided high-resolution
images suitable for agricultural analysis, such as those from the Landsat and Sentinel series.
By applying advanced image processing algorithms and machine learning techniques within
the GEE framework, the team was able to extract detailed information about crops including
location and types. This process is explained in more detail in Annex 3.

Complementary to the remote sensing process, and to ensure accuracy of the collected crop
presence points, a participatory mapping and validation workshop was conducted from 13-14
February 2024 in Zamboanga City and participated by representatives from the Municipal
Agriculture Offices of Basilan (Figure 4).

14



Figure 4. Data collection and validation workshop in Zamboanga City held on 13-14 February
2024

During this activity, the crop presence points were presented to the LGUs using a 1x1 km
gridded map. Participants confirmed the presence of crops at specific point locations on the
map, indicated the presence of crops not detected in the remote sensing process by drawing
a point, and removed points when the crop was absent, guided by their local data and
knowledge. To reduce the spatial autocorrelation which can affect the performance of the
model and result in overfitting, we removed duplicate points that were within the 1x1 km grid,
assuming there are no considerable changes in the bioclimatic variables with the 1-km?
distance (Palao et al., 2016). Figure 5 shows the sampling distance of the crop presence
points before and after the validation and filtering was applied. Image A (top) illustrates rice
crop presence points collected using GEE for remote sensing, and image B (bottom) shows
rice crop presence points validated and filtered within the 1- km? distance.
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Figure 5. Map showing the filtering crop occurrence points based on a 1x1 km grid
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2.4.2. Exposure to Climate-related Hazards

The maps generated using these sources were also validated during the workshop conducted
in Zamboanga City from 13-14 February 2024. A spatially weighted sum was computed to
develop the hazards index level in the province. Hazard indices were classified into five
categories: 0.00 - 0.20 (Very Low), 0.20 - 0.40 (Low), 0.40 - 0.60 (Moderate), 0.60 - 0.80
(High), and 0.80 - 1.0 (Very High).

2.4.3. Adaptive Capacity

Key Informant Interviews (KII) were conducted among representatives of Municipal Agriculture
Offices (MAOSs) in Basilan to gather data for the Adaptive Capacity indicators listed in Table 3
The Adaptive Capacity indicators were grouped into seven capitals, namely: Anticipatory,
Economic, Human, Institutional, Natural, Physical, and Social.

Data that were not available from the MAOs were obtained from the Cities and Municipalities
Competitiveness Index (CMCI) developed by the National Competitiveness Council (NCC)
through the Regional Competitiveness Committees (RCCs) with the assistance of the United
States Agency for International Development.

Table 3. List of Adaptive Capacity Indicators collected

Capitals ‘ Indicators Source
Budget of DRRMP CMCI
Average number of trainings held in a year related to climate
change MAO/MPDC
Anticipatory No. of Telephone Companies and Mobile Services Providers MAO/MPDC
Presence of Disaster Risk Reduction and Management Office
(DRRMO) | Yes=1 and No=0 MAO/MPDC
Presence of Early Warning Systems Yes=1 and No=0 MAO/MPDC
Average Diesel Price (in Php) MAO/MPDC
Average Agricultural Minimum Wage (Non-Plantations) (in
Php) MAO/MPDC
Average Agricultural Minimum Wage (Plantations) (in Php) MAO/MPDC
Economic Cost of Doing Businesses CMCI
Active Businesses in the Locality CMCI
Local Economy Growth CMCI
Municipality Classification MAO/MPDC
Number of Commercial Banks MAO/MPDC
Number of Finance Cooperatives MAO/MPDC
Number of Microfinance Institutions MAO/MPDC
Number of Rural Banks MAO/MPDC
Number of Thrift and Savings Banks MAO/MPDC
Human Number of Health Services Manpower MAO/MPDC
Number of Local Citizens with PhilHealth coverage CMCI
Number of Private Doctors MAO/MPDC
Number of Private Health Services MAO/MPDC
Number of Public Doctors MAO/MPDC
Number of Public Health Facilities MAO/MPDC
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Capitals Indicators Source
Number of Public Health Services MAO/MPDC
Number of Public Secondary Schools MAO/MPDC
Number of Public Teachers MAO/MPDC
Number of Public Technical ad Vocational Schools MAO/MPDC
Number of Public Tertiary Schools MAO/MPDC
Ratio of Public Teachers to Students MAO/MPDC
Average number of Farmers visited by or consulted with
agriculture extension officers in a year MAO/MPDC
Number of DA Officers MAO/MPDC
Institutional Getting Business Permits CMCI
Peace and Order CMCI
Number of DILG recognized awards CMCI
Presence of Implementing Comprehensive Land Use Plan
(CLUP) | Yes=1 and No=0 MAO/MPDC
Presence of DRRM Plan | Yes=1 and No=0 MAO/MPDC
% of Crops Irrigated MAO/MPDC
Natural % of Farmers Owning their agricultural land MAO/MPDC
Average Farm Size per Farmer (ha) MAO/MPDC
Intact Forest Cover (ha) Gowla;%reﬁ
% of Household with Electricity Services MAO/MPDC
% of Household with Water Services MAO/MPDC
Physical
LGU Infrastructure Investment CMCI
Transport Vehicles CMCI
Road Network CMCI
Total Budget Allocation for Infrastructure MAO/MPDC
% of Farmers Covered with Insurance MAO/MPDC
Social % of farmers who are members of coops/unions/groups MAO/MPDC
% of Women in Local Government MAO/MPDC
Number of registered farmer groups or unions MAO/MPDC
Professional Business/Organizations CMCI

2.5. Generation of Maps

All the data collected were preprocessed and standardized to generate intermediate outputs
to be utilized as inputs to the Automated CRVA Tool Ver. 2023 (see Annex 4)

For the sensitivity component, the crop occurrence data, which consists of crop presence
points, were organized into a comma-separated values (csv) format consisting of the name of
the species and the latitude and longitude values of the specific point. The climate data were
also organized into two (2) sets of folders (baseline and projected) being fed into the system
in order to run MaxEnt automatically. Then, the hazard datasets in raster format were clipped
in QGIS using a shapefile of the political boundary of the province. Lastly, the adaptive
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capacity indicators, grouped into different capitals, were encoded in a csv template that can
be read by the automated system.

Using the intermediate files, the automated system will individually run each of the three
components of the CRVA — sensitivity, hazards, and adaptive capacity. The automated system
will then integrate the output of the three components to produce shapefiles of the sensitivity,
hazards, and adaptive capacity indices, as well as the overall vulnerability. These shapefiles
were used to develop the final maps in QGIS for visualization and further analysis.
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3. RESULTS AND DISCUSSION

3.1.  Sensitivity Index

Agricultural production in the Philippines is projected to be significantly affected by climate
change. Similar to the projected increase in temperature and annual rainfall by the year 2050
using the RCP 8.5 scenario, a study by the World Food Programme (WFP) in 2022 showed
that future crop suitability in most of BARMM will be unfavorable for growing several crops.
Similarly, results of the sensitivity analysis in Basilan as shown in Figure 6, Figure 7 and
Table 4 reveal that rice and coconut production areas in the province will be generally less
suitable by 2050.

Table 4. Summary of sensitivity indices for rice and coconut production areas in ~ Basilan

Crop Sensitivity City/Municipality
Rice Low Gain Akbar, Tuburan
Moderate Gain Tipo-Tipo, Al-Barka
High Gain Lantawan, Lamitan, Tabuan-Lasa, Hadji
Mohamman Ajul, Hadji, Muhtamad, Maluso,
Sumisip, Ungkaya-Pukan
Coconut Moderate Decrease Akbar, Hadji Muhammad Ajul, Tabuan-Lasa
Low Decrease Tuburan, Lantawan, Lamitan, Hadji Muhtamad,
Maluso
Moderate Gain Ungkayan-Pukan, Tipo-Tipo, Al-Barka
High Gain Sumisip
Figure 6. Sensitivity map for rice production areas in Basilan
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Figure 7. Sensitivity map for coconut production areas in Basilan. A) Baseline (current)
suitability, B) Future suitability
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For rice sensitivity, all the municipalities have positive results as they will gain suitability by
2050. The municipalities of Lantawan, Tabuan-Lasa, Hadji Mohamman Ajul, Hadji, Muhtamad,
Maluso, Sumisip, Ungkaya-Pukan and the city of Lamitan will have high gains while Tipo-Tipo,
and Al-Barka will have moderate gains and Akbar and Tuburan will have low gains.
Based on the results of the MaxEnt model, the potential distribution of rice in Basilan is strongly
influenced by bioclimatic factors (see Annex 1). Precipitation seasonality (Bio 15) and the
annual range of temperature (Bio 7) contribute 57.7% and 12.4%, respectively, to the
suitability of rice. Additionally, the topographic features of the province provide a more
conducive environment for rice production in the future. A study by Su et. al. (2021) reveals
that rice cultivation in the future would move towards higher latitudes with the continued
impacts of climate change, which benefits Basilan given its higher elevation topography.

As compared to rice, the majority of the coconut production areas in Basilan will be less
suitable while some will also gain suitability by 2050. The municipalities of Tuburan, Lantawan,
Hadji Muhtamad, Maluso and the city of Lamitan will have low decrease while Akbar, Hadiji
Muhammad Ajul, and Tabuan-Lasa will have moderate decrease in coconut suitability. On the
other hand, Ungkayan-Pukan, Tipo-Tipo, and Al-Barka will have moderate gains while
Sumisip will have high gains in suitability in the future.

As a tropical plant, production of coconut is also determined by temperature and changes in
precipitation. Results of the MaxEnt model showed that precipitation seasonality (Bio 15)
contributed 45% to the suitability of coconut. Additionally, precipitation of the driest quarter
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(Bio 17), annual precipitation (Bio 12), and the annual temperature range (Bio 7) contribute
14.5%, 10.9%, and 9.1%, respecti