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EXECUTIVE SUMMARY 

Vulnerability to climate change impacts of rice, coconut, and banana systems in the province 
of Lanao del Sur were assessed using the Climate Risk Vulnerability Assessment (CRVA) 
framework of the Department of Agriculture – Climate Resilient Agriculture Office (DA-CRAO). 
An automated system for operationalizing the CRVA framework was developed and utilized 
in generating the CRVA maps. Data for the major components of vulnerability – exposure, 
sensitivity, and adaptive capacity for the 40 municipalities in Lanao del Sur were collected 
using available secondary sources and through participatory workshops with Municipal 
Agriculture Officers (MAOs) in the province. All the data collected were preprocessed, 
standardized, and utilized as inputs to the Automated CRVA Tool. The automated system was 
used to produce the sensitivity, hazards, adaptive capacity, and overall vulnerability shapefiles 
for map generation. Final maps, including intermediate results for hazards and adaptive 
capacity, were generated using QGIS.  

Analysis of the CRVA maps revealed that the majority of the rice, coconut, and banana-
producing areas in Lanao del Sur have high vulnerability to climate change impacts. 
Specifically, the results showed that: 

• Most areas in Lanao del Sur are susceptible to landslides, erosion, and floods. 

• Future projections using the RCP 8.5 scenario (high emission scenario) showed that 
there would be less conducive environments for rice, coconut, and banana production 
throughout the province. 

• Municipalities in Lanao del Sur generally have low adaptive capacity because of limited 
economic, human, physical, and natural capitals. 

• Overall, indices showed that 73% of rice and 75% of coconut and banana production 
areas in Lanao del Sur have high to very high vulnerability to climate change impacts. 

Given the results of the assessment, climate-resilient adaptation options were also provided 
to serve as guide in developing investment plans and programs to help rice, coconut, and 
banana farming communities in the province reduce their vulnerability. These include the 
adoption of sustainable agricultural practices, integrated land use management, and nature-
based solutions (NbS). 

Agricultural planners are encouraged to use the CRVA maps as guides in targeting areas most 
at-risk to climate change impacts. Likewise, it is envisioned that the results of the assessment 
shall be utilized in creating an enabling environment that will support farmers not only in 
managing climate risks, but, more importantly, in sustaining their livelihoods. 
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1. INTRODUCTION 

1.1. Rationale 

Climate change and variability continue to exert increasing pressure upon the agricultural 
sector of the Philippines. Projected climate change impacts will continue to reduce long-term 
economic growth in the country by 0.02% per year, which equates to a 3.8% reduction in 
Gross Domestic Product (GDP) by 2050 (Rosegrant et. al., 2015). Hence, a better 
understanding of major agricultural vulnerabilities to climate risks is fundamental to achieving 
more resilient farming systems, especially among poor rural households. Therefore, as a first 
step, identifying and prioritizing crops that are most vulnerable to climate risks is necessary at 
a high-resolution scale. In this context, the progressive building of resilience is an intermediate 
outcome contributing to improve communities' coping capacities to a high degree of climate 
risks (Béné et al., 2015). 

The Department of Agriculture (DA) launched the Adaptation and Mitigation Initiative in 
Agriculture (AMIA) program in 2014 as the flagship program of the Department to address the 
impacts of climate change on the agriculture and fisheries sector. As its overall approach, 
AMIA develops and promotes climate-resilient agriculture (CRA) by applying innovative 
technologies and practices, introducing institutional and social reforms, and accessing 
climate-relevant support services. 

To target the most vulnerable areas in the country, a Climate Risk Vulnerability Assessment 
(CRVA) tool was developed through the AMIA program. The CRVA tool helps define priorities 
and design targeted solutions for the most vulnerable populations based on the expected 
impacts from climate change and capacities for adaptation. Results of the CRVA can be 
integrated into broader development approaches for agenda setting, program planning, and 
investment prioritization. Specifically, it can be used for policy analysis and formulation for 
national/sub-national development plans; local-level vulnerability assessment by 
communities, government agencies, and other stakeholder groups; participatory 
assessments; and investment prioritization for potential actions and interventions in climate 
adaptation and mitigation. 

The Asian Development Bank, through NIRAS, implemented the Technical Assistance project 
titled “Accelerating Climate Resilience in Agriculture, Natural Resources, and the 
Environment”, to strengthen the Philippine’s legal, policy, and institutional frameworks for 
climate adaptation and resilience in the agricultural and environmental sectors. The project 
was implemented in close collaboration with the Department of Agriculture Climate Resilient 
Agriculture Office (DA-CRAO). The project aimed to support DA-CRAO in preparing CRVA 
maps for priority crops in the six (6) provinces of the Bangsamoro Autonomous Region of 
Muslim Mindanao (BARMM) following the AMIA CRVA framework. Additionally, the project 
pioneered the development of an automated system for operationalizing CRVA for crops which 
was utilized in generating the CRVA maps for BARMM. 

Specifically, this report covers the results of the CRVA for identified priority crops in the 
province of Lanao del Sur and the potential management strategies to address the adverse 
climate change impacts in the province.  

1.2. Objectives 

Given these contexts, this study aimed to assess the climate risk vulnerability status of rice, 
coconut, and banana in a geospatial landscape at the municipal level in the province of Lanao 
del Sur. Specifically, it aimed to integrate spatial and secondary data clustered under the three 
major components of vulnerability/sensitivity, exposure, and adaptive capacity, to produce 
maps that shall serve as the  basis for developing CRA-related decision support tools and 
recommended guidelines for disseminating climate-related information services, among 
others.  
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2. METHODOLOGY 

2.1. Study Area 

Lanao del Sur is one of the six provinces of the Bangsamoro Autonomous Region of Muslim 
Mindanao (BARMM). It is composed of 39 municipalities and one (1) independent city (Marawi 
City) (Figure 1). The capital of the province is the city of Marawi. Lanao del Sur has a land 
area of 15,055.51 km2 and a total population of 1,195,518 based on the 2020 Census of 
Population of the Philippine Statistics Authority (PSA).  

Figure 1. Location map of Lanao del Sur 

 

2.2. Agriculture in Lanao del Sur 

As of 2022, the agriculture and fisheries sector of Lanao del Sur had an estimated value of 
P26,611,000,000 – an 8.2% growth from the previous year. This constitutes 1.15% of the total 
Philippine Agriculture and Fisheries production value. 

According to the 2012 Census of Agriculture and Fisheries, there are 117,069 individuals in 
the region engaged in agricultural activities aged 10 and above, which makes up 1.4% of the 
overall agricultural workforce in the Philippines (PSA, 2020). 

According to the Philippine Rice Institute (PhilRice), Lanao del Sur has a total rice area of 
77,0006.85 hectares as of 2023, producing around 227,098.5 metric tons of rice - a 1.6% 
increase in production from the previous year (PhilRice, 2023).  

In 2018, Lanao del Sur has a total area of 46,381 hectares for coconut production, which 
produced 187,276 metric tons of coconut during the year. The province makes up 1.3% of the 
national coconut production in the Philippines (PCS, 2023). 
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As of 2023, the province also holds a total area of 5,272 hectares for banana production (PSA, 
n.d.), producing 113,404.67 metric tons of the perennial crop. The banana industry in Lanao 
del Sur recorded a growth of 0.7% from last year (PSA, n.d.).  

Some issues faced by the crop production sectors of the province include deforestation, 
unsustainable farming, limited economic opportunities, and limited development projects 
which have contributed to poverty and environmental degradation in many areas, especially 
those within the proximity of Lake Lanao watershed (ADB, 2023). The province also has a 
history of sustaining crop damages from tropical storms (PNA, 2023), droughts (Colina, 2019), 
and floods (Fernandez, 2023).  

2.3. Conceptual Framework 

The CRVA framework used for the study was adapted from the International Center for 
Tropical Agriculture (CIAT, n.d.) as shown in Figure 2. 

Figure 2. DA-AMIA CRVA framework for crops 

 

 

The CRVA framework developed for DA was based on the Intergovernmental Panel on 
Climate Change (IPCC) Assessment Report 4 (AR4) which defines vulnerability in terms of: 
Exposure to climate-induced shocks (a biophysical phenomenon); Sensitivity of the unit to 
such shocks; and the Adaptive Capacity to deal with such shocks. Each of the dimensions 
and indicators is used to assess the vulnerability of each municipality within a province. The 
components of vulnerability are further defined as: 

• Sensitivity: The increase or decrease of climatic suitability of selected crops to changes 
in temperature and precipitation (Parker et al., 2019). 

• Exposure: The nature and degree to which a system is exposed to significant climate 
variations (IPCC, 2014). 

• Adaptive Capacity: The ability of a system to adjust to climate change (including 
climate variability and extremes) to moderate potential damages, to take advantage of 
opportunities, or to cope with the consequences (IPCC, 2014). 
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2.3.1. Sensitivity 

 The sensitivity of crops to changes in temperature and rainfall was measured by analyzing 
climate suitability by the year 2050 vis-à-vis the baseline (current) condition. The difference, 
expressed as a percentage, in future and baseline suitability determines the change in crop 
climate suitability and reflects the degree of crop sensitivity to changing environmental 
conditions (see Equation 1). Negative values reflect negative impact or decrease in suitability, 
while positive values reflect positive impact or gain in suitability in the future. 

 

 

(1) 

 

Species Distribution Modelling (SDM) using the Maximum Entropy (MaxEnt) model1  was 
employed in the study to analyze climate suitability of the selected crops. The model requires 
climate and crop occurrence data in order to predict the potential geographic distribution of 
the crops and generate the suitability maps (baseline and future). 

A total of 19 bioclimatic variables (Annex 1) from WorldClim (https://www.worldclim.org/) with 
a spatial resolution of about 1 km2 (or 30 arc-seconds) was used to run the model and generate 
the baseline suitability of the selected crops. These bioclimatic variables are gridded climate 
data derived from monthly temperature and rainfall values and were processed to generate 
more biologically meaningful climate variables (Hijmans et al., 2005; Apdohan et al., 2021). 

On the other hand, thirty-three (33) Global Circulation Model (GCMs) (Annex 2) based on 
Coupled Model Intercomparison Model (CMIP) 5 under the Representative Concentration 
Pathway (RCP) 8.52 scenario was used to run the model and generate the suitability of the 
selected crops by year 2050 (future). These climate data was processed and downscaled 
(same resolution as WorldClim) by CIAT using the method of Ramirez-Villegas and Jarvis 
(2010) and can be downloaded from the Climate Change and Food Security website 
http://www.ccafs-climate.org/data_spatial_downscaling/. 

As mentioned, another input to the model is the crop occurrence data which identifies the 
presence of a specific crop within a geographic area. There are several methods to generate 
the crop occurrence data such as collecting points on the ground using participatory mapping 
approach and/or the use of satellite images via remote sensing. Specific methodology used 
for the study is presented in Section 2.4. 

The resulting baseline and projected crop suitability data (in raster format) from the MaxEnt 
model were used as inputs to obtain the difference of the values in each pixel to measure the 
change in suitability. The resulting pixel values range from negative to positive values, and 

 
1 Maximum entropy modeling (MaxEnt) “uses techniques developed from machine learning, allowing empirical 

data to be used to predict the probability of finding something under certain conditions distributed in space” - 
Dudík, M., S. J. Phillips,and R. E. Schapire. 2007. Maximum entropy density estimation with generalized 
regularization and an application to species distribution modeling. Journal of Machine Learning 
Research 8: 1217–1260. 

2 The RCP 8.5 scenario was used in the analysis because climate risks tend to rise in extremely high emission 
scenario and temperature conditions (Katzfey, 2015). It represents potentially high greenhouse gas emission levels 
in the atmosphere and the subsequent increase in solar energy that would be absorbed (radiative forcing) (IPCC 
AR5, 2014). Under RCP 8.5, the projected increase in temperature is +1.4 – 2.6 degree Celsius (oC) for the mid-
century and +2.6 – 4.8oC for the end of the century (IPCC, 2013). Compared to other scenarios, the RCP 8.5 
provides emphasis on risk assessment by providing understanding of the upper limits of potential climate change 
impacts that can contribute to policy and decision-making. 
 

https://www.worldclim.org/
http://www.ccafs-climate.org/data_spatial_downscaling/
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were converted into an index, which serves as the basis for assessing the impact of climate 
change. As shown in Table 1, the index ranges from -1.0 to 1.0 wherein 0.25 to 1.0 indicate a 
decrease in suitability, while -0.25 to -1.0 indicate a gain in suitability, and zero indicates no 
change in suitability (Palao et al., 2016). 

Table 1. Sensitivity index based on percent change of crop suitability from baseline to future 

conditions 

Percent Change in Suitability (Range in %) Index Description 

< -50 (High decrease) 1.0 

Decrease > -50 < -25 (Moderate decrease) 0.5 

> -25 < -5 (Low decrease) 0.25 

> -5 < 5 (No change) 0 No Change 

> 5 < 25 (Low gain) -0.25 

Gain > 25 < 50 (Moderate gain) -0.5 

> 50 (High gain) -1.0 

 

2.3.2. Exposure  

Eight (8) natural hazards were used to assess the exposure of the province to climate-induced 
shocks (a biophysical phenomenon). These hazards were obtained from historical data of 
different databases, as listed in Table 2. The set of hazard weights3 presented in Table 2 was 
also used to reflect the relative impact of each hazard.  

Table 2. Hazard dataset used for exposure assessment 

Hazards Description Source Weights % 
(CIAT, 2017)  

Typhoon Typhoon incidence based on frequency UNEP/UNISDR 16.95 

Flood 
Susceptibility 

Identifies areas at different levels of risk 
to flood based on physical 
characteristics 

DENR-MGB 15.25 

Drought Identified areas at risk to agricultural 
drought based on physical 
characteristics 

AMIA 16.95 

Erosion Identifies areas at different levels of risk 
to erosion based on physical 
characteristics 

BSWM 12.71 

Landslide Identifies areas at different levels of risk 
to landslide based on physical 
characteristics 

DENR-MGB 14.41 

Saltwater 
Intrusion 

Identifies areas that are potentially 
affected by saltwater intrusion based on 
ground water potential 

NWRB 10.17 

 
3 The hazard weights in Table 2 were developed by the International Center for Tropical Agriculture (CIAT) 
through a workshop participated by State Universities and Colleges (SUC) experts and Department of Agriculture 
(DA) focal persons. Specific weights per island group (Luzon, Visayas, and Mindanao) were generated, and the 
weights presented in Table 2 were for Mindanao. The probability/impact of the hazard risk was measured from a 
semi-quantitative assessment by scoring different sets of criteria: 1) frequency of occurrence, 2) impact of local 
household income, 3) impact to key natural resources to sustain, 4) impact to food security of the country, and 5) 
impact to national economy. 
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Sea Level Rise Identifies areas that can be potentially 
affected by sea level rise 

AMIA 5.08 

Storm Surge Identifies areas that are potentially 
affected by storm surge based on  

DOST 8.47 

The analysis of hazards was limited to baseline conditions because many climate-induced 
natural hazards occur in large-scale singular events, and projection to the year 2050 may add 
further layers of uncertainty. Each hazard dataset was in the form of a raster file. To 
standardize the raster files, the pixels were aggregated for each municipality using the zonal 
statistics tool in QGIS and selecting mean or sum as the basis for data aggregation (Palao et 
al., 2016). 

After employing zonal statistics, the spatially-weighted sum of the eight (8) hazards was used 
to develop the hazard index for each municipality. The weighted sum was normalized using 
equation 2 to standardize the value from 0 to 1, creating the hazard index.  
Five equal breaks were used to classify the hazard index into: 0-0.20 (Very Low), 0.20-0.40 
(Low), 0.40-0.60 (Moderate), 0.60-0.80 (High), and 0.80-1.00 (Very High). 
 
 
 
(2) 
 
 
 

2.3.3. Adaptive Capacity  

Adaptive capacity forms one of the pillars of vulnerability which measures the ability of a 
system to deal with climate change-induced shocks. In the process of developing the adaptive 
capacity index, a diverse range of locally compiled data were used including socio-economic 
factors, institutional capabilities, and agricultural data. These datasets were categorized into 
seven capitals to provide a more comprehensive lens of a system’s strengths and 
weaknesses. These include: Anticipatory, Economic, Human, Institutional, Natural, Physical, 
and Social capitals. 

Anticipatory Capital refers to the ability of a system to anticipate and minimize negative 
impacts of climate hazards through foresight, prior planning, and preparation. This capital 
includes indicators related to information dissemination, forecasting, and building capacity and 
awareness of local stakeholders related to climate change. Economic capital includes 
indicators which relate to economic assets and financial resources, which local citizens may 
tap to bear the costs of adaptation to climate-related hazards and impacts. This capital 
includes existing financial institutions and local economic activities and conditions in the 
city/municipality. For this assessment, Human Capital pertains to education and health 
sectors. It includes indicators which measure the available manpower in the city/municipality 
and resources which can support human well-being as well as development of knowledge and 
skills of local citizens. Institutional Capital refers to established mechanisms within the local 
government which can support and facilitate management, development, and implementation 
of climate change-related activities. Physical Capital, on the other hand, includes 
infrastructure-related indicators, as well as facilities which sustain operation and flow of 
activities within the city/municipality. Lastly, Social Capital relates to farmer organizations and 
gender-related factors and considerations. 

The composite index for each capital was constructed by averaging the normalized values of 
all the indicators. The composite adaptive capacity (AC) index is derived using the sum 
function of all capital indices which were normalized and treated with equal weights. Five equal 
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categories were developed to establish the thresholds: 0-0.20 (Very Low), 0.20-0.40 (Low), 
0.40-0.60 (Moderate), 0.60-0.80 (High), and 0.80-1.00 (Very High). 

Vulnerability Index. The vulnerability of each municipality is expressed as the weighted sum 
of the potential impact (i.e., sensitivity and exposure to hazards as presented in Figure 2), 
weighted at 30%, and the inverted adaptive capacity index, weighted at 70%. These 
percentages were based on the other CRVAs completed by the DA-AMIA program, 
highlighting the importance of building a strong capacity of the province to moderate the 
impacts of climate change. The values obtained were normalized linearly from an interval of 0 
to 1 using Equation 2. Based on the minimum and maximum values, the municipalities were 
classified from very high to very low using five (5) equal breaks: 0-20 (Very Low); 20-40 (Low); 
40-60 (Moderate); 60-80 (High); and 80-100 (Very High). Figure 3 illustrates how the different 
dimensions of vulnerability are integrated to produce the final vulnerability index. 

Figure 3. Integration of the three key dimensions of vulnerability 

 

 

2.4. Data Collection and Validation 

2.4.1. Crop Occurrence Data 

As mentioned in the previous section, one of the inputs of the MaxEnt model is crop 
occurrence data. The use and analysis of satellite images via remote sensing and the 
participatory mapping approach were both utilized in this project. 

The crop occurrence data were initially mapped by collecting crop presence points via remote 
sensing by leveraging Google Earth Engine (GEE), a powerful cloud-based platform for 
planetary-scale environmental data analysis. This platform utilizes a multi-petabyte catalog of 
satellite imagery and geospatial datasets, enabling analysts to detect changes, map trends, 
and quantify differences on the Earth's surface. Using GEE, the team was able to efficiently 
access and process large volumes of satellite images to identify areas of crop cultivation in 
the region. The process involved selecting specific satellite data that provided high-resolution 
images suitable for agricultural analysis, such as those from the Landsat and Sentinel series. 
By applying advanced image processing algorithms and machine learning techniques within 
the GEE framework, the team was able to extract detailed information about crops including 
location and types. This process is explained in more detail in Annex 3. 

Complementary to the remote sensing process, and to ensure accuracy of the collected crop 
presence points, a participatory mapping and validation workshop was conducted from 30-
31 January 2024 in Cagayan de Oro City and participated by representatives from the 
Municipal Agriculture Offices of Lanao del Sur (Figure 4). 
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Figure 5. Data collection and validation workshop in Cagayan de Oro City held on 30-31 

January 2024 

 

 

During this activity, the crop presence points were presented to the LGUs using a 1x1 km 
gridded map. Participants confirmed the presence of crops at specific point locations on the 
map, indicating the presence of crops not detected in the remote sensing analysis by drawing 
a point, and removed points when the crop was absent, guided by their local data and 
knowledge. To reduce the spatial autocorrelation which can affect the performance of the 
model and result in overfitting, we removed duplicate points that were within the 1x1 km grid, 
assuming there were no considerable changes in the bioclimatic variables within the 1-km2 
distance (Palao et al., 2016). Figure 6 shows the sampling distance of the crop presence 
points before and after the validation and filtering was applied. Image A illustrates rice crop 
presence points collected using GEE for remote sensing, and image B shows rice crop 
presence points validated and filtered within the 1- km2 distance. 
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Figure 6. Map showing the filtering crop occurrence points based on a 1x1 km grid 

 

 

2.4.2. Exposure to Climate-related Hazards 

The maps generated using these sources were also validated during the workshop conducted 
in Cagayan de Oro City from 30-31 January 2024. A spatially weighted sum was computed to 
develop the hazards index levels in the province. Hazard indices were classified into five 
categories: 0.00 - 0.20 (Very Low), 0.20 - 0.40 (Low), 0.40 - 0.60 (Moderate), 0.60 - 0.80 
(High), and 0.80 - 1.0 (Very High). 
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2.4.3. Adaptive Capacity 

Key Informant Interviews (KII) were conducted among representatives of Municipal Agriculture 
Offices (MAOs) in Lanao del Sur to gather data for the Adaptive Capacity indicators listed in 
Table 3. The Adaptive Capacity indicators were grouped into seven categories, namely: 
Anticipatory, Economic, Human, Institutional, Natural, Physical, and Social.  

Data that were not available from the MAOs were obtained from the Cities and Municipalities 
Competitiveness Index (CMCI) developed by the National Competitiveness Council (NCC) 
through the Regional Competitiveness Committees (RCCs) with the assistance of the United 
States Agency for International Development. 

Table 3. List of Adaptive Capacity Indicators collected 

Capitals Indicators Source 

Anticipatory 
  
  
  
  

Budget of DRRMP CMCI 

Average number of trainings held in a year related to climate 
change MAO/MPDC 

No. of Telephone Companies and Mobile Services Providers MAO/MPDC 

Presence of Disaster Risk Reduction and Management Office 
(DRRMO) | Yes=1 and No=0 MAO/MPDC 

Presence of Early Warning Systems Yes=1 and No=0 MAO/MPDC 

Economic 
  
  
  
  
  
  
  
  
  
  
  

Average Diesel Price (in Php) MAO/MPDC 

Average Agricultural Minimum Wage (Non-Plantations)  (in 
Php) MAO/MPDC 

Average Agricultural Minimum Wage (Plantations)  (in Php) MAO/MPDC 

Cost of Doing Businesses CMCI 

Active Businesses in the Locality CMCI 

Local Economy Growth CMCI 

Municipality Classification MAO/MPDC 

Number of Commercial Banks MAO/MPDC 

Number of Finance Cooperatives MAO/MPDC 

Number of Microfinance Institutions MAO/MPDC 

Number of Rural Banks MAO/MPDC 

Number of Thrift and Savings Banks MAO/MPDC 

Human 

  
  
  
  
  
  
  
  
  
  
  

Number of Health Services Manpower MAO/MPDC 

Number of Local Citizens with PhilHealth coverage CMCI 

Number of Private Doctors MAO/MPDC 

Number of Private Health Services MAO/MPDC 

Number of Public Doctors MAO/MPDC 

Number of Public Health Facilities MAO/MPDC 

Number of Public Health Services MAO/MPDC 

Number of Public Secondary Schools MAO/MPDC 

Number of Public Teachers MAO/MPDC 

Number of Public Technical ad Vocational Schools MAO/MPDC 
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Capitals Indicators Source 

Number of Public Tertiary Schools MAO/MPDC 

Ratio of Public Teachers to Students MAO/MPDC 

Institutional 
  
  
  
  
  
  

Average number of Farmers visited by or consulted with 
agriculture extension officers in a year MAO/MPDC 

Number of DA Officers MAO/MPDC 

Getting Business Permits CMCI 

Peace and Order CMCI 

Number of DILG recognized awards CMCI 

Presence of Implementing Comprehensive Land Use Plan 
(CLUP) | Yes=1 and No=0 MAO/MPDC 

Presence of DRRM Plan | Yes=1 and No=0 MAO/MPDC 

Natural 
  
  
  

% of Crops Irrigated MAO/MPDC 

% of Farmers Owning their agricultural land MAO/MPDC 

Average Farm Size per Farmer (ha) MAO/MPDC 

Intact Forest Cover (ha) 
Global Forest 

Watch 

Physical 
  
  
  
  
  

% of Household with Electricity Services MAO/MPDC 

% of Household with Water Services MAO/MPDC 

LGU Infrastructure Investment CMCI 

Transport Vehicles CMCI 

Road Network CMCI 

Total Budget Allocation for Infrastructure MAO/MPDC 

Social 
  
  
  
  

% of Farmers Covered with Insurance MAO/MPDC 

% of farmers who are members of coops/unions/groups MAO/MPDC 

% of Women in Local Government MAO/MPDC 

Number of registered farmer groups or unions MAO/MPDC 

Professional Business/Organizations CMCI 

 
 

2.5. Generation of Maps 

All the data collected were preprocessed and standardized to generate intermediate outputs 
to be utilized as inputs to the Automated CRVA Tool Ver. 2023 (see Annex 4) 

For the sensitivity component, the crop occurrence data, which consists of crop presence 
points, were organized into a comma-separated values (csv) format consisting of the name of 
the species and the latitude and longitude values of the specific point. The climate data were 
also organized into two (2) sets of folders (baseline and projected) being fed into the system 
in order to run MaxEnt automatically. Then, the hazard datasets in raster format were clipped 
in QGIS using a shapefile of the political boundary of the province. Lastly, the adaptive 
capacity indicators, grouped into different capitals, were encoded in a csv template that can 
be read by the automated system. 

Using the intermediate files, the automated system will individually run each of the three 
components of the CRVA – sensitivity, hazards, and adaptive capacity. The automated system 
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will then integrate the output of the three components to produce shapefiles of the sensitivity, 
hazards, and adaptive capacity indices, as well as the overall vulnerability. These shapefiles 
were used to develop the final maps in QGIS for visualization and further analysis.  
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3. RESULTS AND DISCUSSION 

3.1. Sensitivity Index 

Agricultural production in the Philippines is projected to be significantly affected by climate 
change. Similar to the projected increase in temperature and annual rainfall by the year 2050 
using the RCP 8.5 scenario, a study by the World Food Programme (WFP) in 2022 showed 
that future crop suitability in most of BARMM will be unfavorable for growing several crops. 
Similarly, results of the sensitivity analysis in Lanao del Sur as shown in Figure 7 through 
Figure 9 revealed that rice, coconut, and banana production areas in the province will be 
generally less suitable by 2050. 

Figure 7. Sensitivity map for rice production areas in Lanao del Sur. (A) Baseline (current) 

suitability; (B) Future suitability 
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Figure 8. Sensitivity map for coconut production areas in Lanao del Sur. (A) Baseline (current) 

suitability; (B) Future suitability 

 

Figure 9. Sensitivity map for banana production areas in Lanao del Sur. (A) Baseline (current) 

suitability; (B) Future suitability 
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Table 4. Summary of sensitivity indices for rice and coconut production areas in Lanao del Sur 

Crop Sensitivity City/Municipality 

 
 
 
 
 
Rice 
 

High Gain Bumbaran 

Moderate Gain Sultan Dumalondong, Butig 

Low Gain Tagaloan II 

No Change Wao, Bubong  

Low Decrease Madalum, Bacolod-Kalawi 

Moderate Decrease Tugaya, Madamba, Kapai, Masiu 

High Decrease Picong, Malabang, Kapatagan, Piagapo, Balabagan, 
Maguing, Lumba Bayabao, Lumbayanague, Lumbatan, 
Lumbaca-Unayan, Marogong, Bayang, Binidayan, 
Pagayawan, Tubaran, Calanogas, Ganassi, Pualas, 
Saguiaran, Marawi City, Buadiposo-Buntong,, Taraka, 
Tamparan, Poona Bayabao. Ditsaan-Marain, Mulondo, 
Balindong, Marantao 

 
 
Coconut 

Low Gain Balabagan, Kapatagan, Malabang 

Moderate Decrease Wao, Bumbaran, Maguing, Lumba-Bayabao, Saguiaran, 
Madalum, Bacolod-Kalawi, Tugaya 

High Decrease Butig, Sultan Dumalondong, Tagoloan II, Bubong, 
Madamba, Masiu, Kapai, Picong, Piagapo, 
Lumbayanague, Lumbatan, Lumbaca-Unayan, Marogong, 
Bayang, Binidayan, Pagayawan, Tubaran, Calanogas, 
Ganassi, Pualas, Marawi City, Buadiposo-Buntong, 
Taraka, Tamparan, Poona Bayabao, Ditsaan-Marain, 
Mulondo, Balindong, Marantao 

 
 
Banana 

High Gain Bumbaran, Lumba-Bayabao 

Moderate Gain Sultan Dumalondong, Butig 

Low Gain Bacolod-Kalawi 

No Change Madalum 

Moderate Decrease Wao, Maguing, Balabagan, Kapatagan 

High Decrease Marawi City, Bubong, Lumba Bayabao, Tagoloan II, 
Madamba, Pualas, Picong, Marogong, Ganassi, 
Pagayawan, Binidayan, Bayang, Masiu, Taraka, Mulondo, 
Malabang, Saguiaran, Tugaya, Kapai, Piagapo, 
Lumbayanague, Lumbatan, Tubaran, Calanogas, 
Buadiposo-Buntong, Tamparan, Poona Bayabao, Ditsaan-
Marain, Balindong, Marantao 

 

For rice sensitivity, 85% or 34 out of the 40 municipalities in Lanao del Sur will experience a 
decrease in suitability by 2050. On the other hand, the municipalities of Bumbaran (high); 
Sultan Dumalondong and Butig (moderate); and Tagaloan II (low) will gain suitability and have 
more areas conducive for cultivating rice in the future. 

Based on the result of the MaxEnt model, the potential distribution of rice in Lanao del Sur is 
strongly influenced by bioclimatic factors including Bio 8 (mean temperature of wettest quarter, 
27.7%), Bio 12 (annual precipitation, 21.8%), Bio 17 (precipitation of driest quarter, 18%), and 
Bio 18 (precipitation of warmest quarter, 12.1%). The changes in temperature heavily affect 
soil moisture content, in turn affecting rice growth, which contributes to climate-driven 
production variability, especially during the dry season (Stuecker et al., 2018).  

On the other hand, the majority of the coconut production areas in Lanao del Sur will 
experience a moderate to high decrease in suitability except for the municipalities of 
Balabagan, Kapatagan, and Malabang which will have a low gain in suitability by 2050.  

As a tropical plant, production of coconut is also determined by temperature and changes in 
precipitation. Results of the MaxEnt model showed that Bio 5 (maximum temperature of the 
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warmest month, 23.7%), Bio 6 (minimum temperature of the coldest month, 22.1%), Bio 19 
(precipition of coldest quarter, 19.8%), and Bio 15 (precipitation seasonality, 14.1%) had the 
highest percent contribution affecting future suitability of coconut in the province. According to 
Hebbar et. al. (2022), the optimal temperature for growth of coconut is 27°C ± 5°C. However, 
analysis from the study by WFP (2023) revealed that most areas in mainland provinces in 
BARMM will experience higher temperatures (greater than 30oC) and a 5% increase in the 
amount of annual rainfall in 2050 under the RCP 8.5 scenario. This analysis, together with the 
results of the Maxent model showing that variations in monthly precipitation and temperature 
are determinants of coconut suitability, may explain the high sensitivity of coconut production 
areas in the province. 

Lastly, the majority of the banana-growing areas in Lanao del Sur will also experience a 
decrease in suitability. 83% or 34 municipalities will have a moderate to high decrease in 
banana suitability by 2050. Meanwhile, the municipalities of Bumabaran, and Lumba-Bayabao 
(high); Sultan Dumalondong, and Butig (moderate); and Bacolod-Kalawi (low) will gain more 
suitable areas for banana cultivation in the future.  

The growth and development of banana is also highly influenced by variabilities in temperature 
(Salvacion, 2020). Consistent to this, the results of modelling using MaxEnt showed that 
temperature variables had the highest impact to banana suitability. These bioclimatic 
indicators include Bio 10 (temperature of warmest quarter, 31.2%), Bio 17 (precipitation of 
driest quarter, 19%), and Bio 9 (mean temperature of driest quarter, 13.4%). The optimum 
temperature required for cultivating banana is 27oC (Robinson and Sauco, 2010; Salvacion, 
2020), and, as previously discussed, the projected increase in temperature of up to greater 
than 30oC in Lanao del Sur may explain why the majority of the banana production areas in 
the province are also projected to have a decrease in suitability by 2050. 

3.2. Exposure Index 

Figure 10 shows the degree of exposure to hazards across the municipalities of Lanao del Sur. 
Based on the assessment, these municipalities have higher exposure to flood, landslides, and 
erosion as compared to other hazards. As seen in Figure 9, municipalities are more 
susceptible to land-based hazards. However, coastal areas including the municipalities of 
Picong, Malabang, Balabagan, and Kapatagan are also exposed to storm surge and sea level 
rise. 
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Figure 10. Individual hazard maps for eight climate risks in Lanao del Sur

 

The overall hazard map (Figure 11) shows that the municipalities of Picong, Malabang, and 
Kapatagan have the highest (very high) exposure to hazards in Lanao del Sur. Moreover, 
the municipalities of Madamba, Madalum, Tugaya, Piagapo, Balabagan, Bumabaran, Wao, 
and Tagoloan II have high exposure indices. On the other hand, the majority (73%) of the 
municipalities have low to moderate exposure.  

The results of the analysis of hazards revealed that Lanao del Sur is generally not susceptible 
to climate-related risks. However, high exposure to landslide and erosion, which have high 
relative weights as mentioned in Table 2, affected the overall values making most of the areas 
moderate to highly exposed. 
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Figure 11. Overall exposure map of Lanao del Sur 

 

 

3.3. Adaptive Capacity Index 

Figure 12 and Table 5 show the overall adaptive capacity of the municipalities in Lanao del 
Sur.  

Table 5. Summary of adaptive capacity indices of the municipalities in Lanao del Sur 

Adaptive Capacity Municipalities/City 

Very High Marawi City 

High Wao 

Moderate Kapatagan, Bubong, Lumba-Bayabao 

Low Malabang, Bumabaran, Maguing, Saguiaran, Bacolod-Kalawi, Tugaya, 
Butig, Sultan Dumalondong, Kapai, Piagapo, Lumbayanague, 
Lumbatan, Tubaran, Calanogas, Buadiposo-Buntong, Tamparan, 
Poona Bayabao, Ditsaan-Marain, Balindong, Marantao 

Very Low Tagaloan II, Madalum, Madamba, Pualas, Picong, Balabagan, 
Marogong, Ganassi, Pagayawan, Binidayan, Bayang, Lumbaca-
Unayan, Masiu, Taraka, Mulondo 
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Figure 12. Overall adaptive capacity map of Lanao del Sur 

 

Results of the assessment showed that the city of Marawi and municipality of Wao have very 
high and high adaptive capacity, respectively. On the other hand, 88% or 35 municipalities in 
Lanao del Sur have low to very low adaptive capacity. 

The municipality of Wao is classified as first class while the city of Marawi is considered as 
second class. On the other hand, those with low and very low adaptive capacity indices are 
classified as fourth to sixth class municipalities. As seen in Figure 13, the high adaptive 
capacity of the municipality of Wao can be attributed to its high economic, anticipatory, and 
institutional capacities. Meanwhile, the city of Marawi has high values for anticipatory, 
economic, human, and physical capitals.  
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Figure 13. Individual maps for adaptive capacity capitals in Lanao del Sur 

 

Moreover, it is evident that the majority of the areas in Lanao del Sur have low values across 
all of the adaptive capacity capitals, particularly on economic, human, physical, and natural 
indicators. Human capital includes health and education sectors, and since most of the areas 
do not have sufficient manpower for health- and education-related services, such as doctors 
and teachers, values are generally low for the province. Additionally, low infrastructure 
investments, particularly for road networks and transport vehicles resulted in low to very low 
physical capitals for Lanao del Sur. 

3.4. Overall Vulnerability 

Figure 14  through Figure 16 show the overall vulnerability maps of rice, coconut, and 
banana, respectively. 
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Figure 14. Overall vulnerability map of rice production areas in Lanao del Sur 

 

Figure 15. Overall vulnerability map of coconut production areas in Lanao del Sur 
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Figure 16. Overall vulnerability map of banana production areas in Lanao del Sur 

 

 

As also seen in Table 6, 73% of municipalities in Lanao del Sur have high to very high 
vulnerability for rice, including the municipalities of Tubaran, Binidayan, Balabagan, 
Lumbayanague, Pualas, Mulondo, Malabang, Lumbaca-Unayan, Bayang, Picong, Ganassi, 
and Marogong (very high); and Marantao, Calanogas, Maguing, Buadiposo-Buntong, 
Tagoloan II, Poona Bayabao, Taraka, Kapatagan, Ditsaan-Ramain, Saguiaran, Sultan 
Dumalondong, Madamba, Piagapo, Tamparan, Madalum, Lumbatan, and Pagayawan (high). 
On the other hand, municipalities with higher adaptive capacities were classified with low to 
very low vulnerability including Bubong and Bumbaran (low); and Marawi City, Wao, and 
Lumba-Bayabao (very low). 

Table 6. Summary of overall vulnerability indices of rice production areas in Lanao del Sur 

Vulnerability Municipality/City 

Very High Tubaran, Binidayan, Balabagan, Lumbayanague, Pualas, Mulondo, Malabang, 
Lumbaca-Unayan, Bayang, Picong, Ganassi, Marogong 

High Marantao, Calanogas, Maguing, Buadiposo-Buntong, Tagoloan II, Poona Bayabao, 
Taraka, Kapatagan, Ditsaan-Ramain, Saguiaran, Sultan Dumalondong, Madamba, 
Piagapo, Tamparan, Madalum, Lumbatan, Pagayawan 

Moderate Butig, Balindong, Bacolod-Kalawi, Masiu, Kapai, Tugaya 

Low Bubong, Bumbaran 

Very Low Marawi City, Wao, Lumba-Bayabao 

 
 
On the other hand, Table 7 shows that 75% of both the coconut and banana production areas 
in the province were also highly to very highly vulnerable to climate change impacts. These 
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include Tubaran, Binidayan, Lumbayanague, Pualas, Mulondo, Malabang, Madamba, 
Madalum, Lumbaca-Unayan, Tagoloan II, Bayang, Picong, Ganassi, and Marogong (very 
high); and Marantao, Calanogas, Masiu, Buadiposo-Buntong, Poona Bayabao, Taraka, Kapai, 
Ditsaan-Ramain, Maguing, Saguiaran, Sultan Dumalondong, Balabagan, Piagapo, 
Tamparan, Lumbatan, and Pagayawan (high). Meanwhile, Bumbaran (low); and Marawi City, 
Lumba-Bayabao, and Wao (very low) have low to very low vulnerability results.  

 
Table 7. Summary of overall vulnerability indices of coconut and banana production areas in 

Lanao del Sur 

Vulnerability Municipality/City 

Very High Tubaran, Binidayan, Lumbayanague, Pualas, Mulondo, Malabang, Madamba, 
Madalum, Lumbaca-Unayan, Tagoloan II, Bayang, Picong, Ganassi, Marogong  

High Marantao, Calanogas, Masiu, Buadiposo-Buntong, Poona Bayabao, Taraka, Kapai, 
Ditsaan-Ramain, Maguing, Saguiaran, Sultan Dumalondong, Balabagan, Piagapo, 
Tamparan, Lumbatan, Pagayawan 

Moderate Butig, Tugaya, Bacolod-Kalawi, Bubong, Balindong, Kapatagan 

Low Bumbaran 

Very Low Marawi City, Lumba-Bayabao, Wao 
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4. CLIMATE RESILIENT AGRICULTURE PRACTICES 

Rice is a staple food in the province, and in the face of growing demand and worsening climate 
conditions, production may become insufficient which would jeopardize food security. Hence, 
it is important to promote climate-resilient practices to help agricultural communities reduce 
their vulnerability. Strategies to increase resilience may include cultivation of more resilient 
crops, the adoption of sustainable agricultural practices, crop diversification, and technological 
innovations. As many areas in Lanao del Sur are more susceptible to landslide and erosion, 
terracing has been one of the most important systems for preventing soil erosion, conserving 
water, and increasing rice production. Other sustainable agricultural practices that can help 
manage these hazards include crop rotation, cover cropping, mulching, and contour plowing.  

The use of more resistant rice varieties or other crops that can naturally tolerate stressful 
conditions such as drought and flood are also recommended, especially in areas susceptible 
to these hazards. Using multiple varieties allows greater flexibility to respond to climate-related 
impacts and promotes biodiversity that is fundamental in building resilient agricultural systems 
(Mundiriso, 2023).  

The coconut and banana sectors also face several challenges such as low productivity and 
proliferation of pests and disease due to climate variabilities. For areas with high vulnerability 
to climate change, it is recommended to practice diversification through agro-forestry and 
integrated land management. Inter-cropping of other crops such as cacao, coffee, and other 
high value crops allows for higher biodiversity than conventional agricultural systems and 
provides more sources of livelihood and income. Additionally, this practice will create a more 
conducive environment for preventing soil erosion since more roots and organic matter are 
found in soil which enhances its capability to absorb more water to withstand adverse 
conditions such as drought (Schewee, 2021).  

For rice, coconut, and banana sectors, nature-based solutions provide more sustainable and 
strategic options that support environmental protection and socio-economic development. 
Since the majority of the areas in the province are susceptible to flood, landslide, and erosion, 
and that data from the Global Forest Watch (n.d.) shows that from 2002-2022, Lanao del Sur 
province already lost 6.13 kha (39%) of primary forest, restoration of forest ecosystem is 
recommended. This will not only minimize the exposure to hazards in areas most-at-risk but 
can also improve adaptive capacity of communities by augmenting their natural capital.  
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5. SUMMARY AND CONCLUSION 

The results of the CRVA showed that the majority of the rice, coconut, and banana production 
areas in Lanao del Sur have high to very high vulnerability to climate change impacts. The 
hazard maps showed that many areas in the province are most susceptible to landslides, 
erosion, and flood. Future climate scenario also showed that there will be fewer environments 
that are conducive to rice, coconut, and banana production throughout the province. Moreover, 
most of the areas have generally high vulnerability because of low adaptive capacity. Across 
the province, data showed that most of the municipalities have low economic, human, 
physical, and natural capitals.  

The use of the automated CRVA tool was also found to increase efficiency as it reduced 
processing time and minimized potential human errors. Data for the indicators used in the 
study are also constantly being updated, and the automated CRVA tool provides an 
opportunity for users to conveniently enhance their respective CRVAs in the future. Given that 
climate data projections are continuously evolving, it is necessary that the SDM be updated 
regularly to reflect the most recent climate projections whenever new datasets are available. 
Additionally, provincial boundaries were used in the analysis as opposed to climatic 
boundaries, which limited the MaxEnt model's use of the full climatic/environmental ranges. It 
is recommended to explore preserving the extent of the climate data boundaries at the regional 
level or at least set a 20-km buffer when clipping the raster file, to avoid overfitting the SDM 
and to generate more reliable results. 

Given the CRVA results, developing climate change adaptation strategies to safeguard the 
rice, coconut, and banana sectors from potential risks is of the utmost importance to sustain 
production and to promote resilience and structural transformation among the most 
susceptible areas in the province. As agriculture faces several threats in the future, there is a 
need to remove the dependency on only one form of livelihood to diversify livelihoods and 
introduce other income-generating activities through skills and micro-enterprise development, 
and integrate climate-resilient interventions into local policies, based on the prevailing 
vulnerability to climate risks.  

It is envisioned that the results of this CRVA will serve as a guide for agricultural 
planners in Lanao del Sur in crafting evidence- and science-based interventions to 
build more climate-resilient and sustainable agricultural communities in the province.  
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7. ANNEXES 

Annex 1. List of the 19 bioclimatic indicators used in running the SDM using MaxEnt 
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Annex 2. List of the 33 GCMs and their corresponding modelling center/institution 
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Annex 3. Detailed methodology for crop occurrence generation using remote sensing 

The team employed the latest technologies, including remote sensing, satellite imagery 
analysis, and artificial intelligence/machine learning, for the collection of crop occurrence data. 
The utilization of these advanced technological methods offers numerous advantages. It 
enables the rapid collection of data across vast and potentially inaccessible areas, bypassing 
the logistical challenges and time-consuming nature of traditional ground surveys. Moreover, 
remote sensing and satellite technologies provide high-resolution imagery that can be 
analyzed to detect crops. 

The crop occurrence data was collected by leveraging Google Earth Engine (GEE), a powerful 
cloud-based platform for planetary-scale environmental data analysis. This platform utilizes a 
multi-petabyte catalog of satellite imagery and geospatial datasets, enabling researchers and 
analysts to detect changes, map trends, and quantify differences on the Earth's surface. Using 
GEE, the team was able to efficiently access and process large volumes of satellite images to 
identify areas of crop cultivation in the region. The process involved selecting specific satellite 
data that provide high-resolution images suitable for agricultural analysis, such as those from 
the Landsat and Sentinel series. By applying advanced image processing algorithms and 
machine learning techniques within the GEE framework, the team was able to extract detailed 
information about crops including location and types. The GEE Script prepared for this project 
to identify crop occurrence in the BARMM provinces can be access from the following link.  

https://code.earthengine.google.com/?accept_repo=users/rynekem/CRVA  

For identifying the crop occurrence using GEE, the following steps were followed:  

Access Google Earth Engine 

Begin by accessing the GEE platform, which requires a Google account and registration for 
access to its resources. GEE provides a web-based IDE (Integrated Development 
Environment) for developing and executing your analysis scripts. 

Define the Study Area / Area of Interest  

The identification of the area of interest or study area, which encompasses specific provinces, 
was accomplished by uploading the shapefile representing the boundaries of these provinces. 
This shapefile was formatted in EPSG: 4326 (WGS 84), ensuring it adheres to the global 
coordinate system for accurate geospatial analysis. 

Select Satellite Datasets 

Appropriate satellite imagery datasets, deemed suitable for crop analysis, were selected. 
Given the emphasis on high spatial resolution, Sentinel-2 emerged as the common choice. 
These datasets were provided free of charge within the Google Earth Engine (GEE) data 
catalog. The dataset (image) was selected based on the following aspect: 

• Growing season of crops: Specific images were selected based on the growing season 
of the selected crops.  

• Recent data: Image that were taken recent time were prioritized.  

• Cloud coverage: Images that have less cloud coverage were selected.  

Preprocess the Data 

Preprocessing steps were applied to the selected satellite images. This included correcting for 
atmospheric conditions, implementing cloud masking to remove images with significant cloud 
cover, and normalizing images to account for differences in satellite passes. 

Training Data Preparation 

This process involved the gathering of data necessary for training machine learning models 
or conducting analysis on crop types and distribution, utilizing Google Maps, a tool that 

https://code.earthengine.google.com/?accept_repo=users/rynekem/CRVA
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provides access to satellite imagery and often includes labels or annotations for various 
features, including agricultural fields. This dataset called “Ground Truth” was then used to train 
algorithms to recognize crop types automatically or to analyze the spatial distribution of 
different crops.  

• Careful Inspection of Crops on Google Maps: The initial step was the navigation 
through Google Maps for the visual inspection of areas known or suspected to be 
agricultural fields. The high-resolution satellite images available on Google Maps 
allowed for the observation of different land use patterns and the distinction between 
various types of vegetation, including different crop species. 

• Identification of Crop Fields Labeled on Google Maps: Often, agricultural fields on 
Google Maps were found tagged with names or types of crops being cultivated. These 
labels, which could be user-generated or derived from various data sources integrated 
into Google Maps, helped in confirming the types of crops grown in each field. 

The ground truth data was divided into training and validation sets for the Training and 
Validation Split. The training set was utilized to train the classification model, whereas the 
validation set was employed to evaluate its performance. 

• Training Set: A subset of the ground truth data used to train the model. The model 
learns to make predictions or classify data points based on the patterns it identifies in 
this dataset. Around 300-500 training data for each corps were used depending on the 
accuracy for each province. 

• Validation Set: Another subset of the ground truth data, separate from the training set, 
used to evaluate the model's performance. The validation set tests how well the model 
generalizes to new, unseen data. It's crucial for detecting overfitting, where the model 
performs well on the training data but poorly on new data.  

Classification Model Selection and Training 

A suitable machine learning algorithm for classification was chosen. In the context of Google 
Earth Engine (GEE), Random Forest is a common choice for crop classification due to its 
effectiveness and efficiency in handling spatial data and its ability to manage high-
dimensional datasets. 

The chosen algorithm - Random Forest, was trained using the training data. This process 
involved providing the algorithm with features and the corresponding labels of different crop 
types. The training phase allows the algorithm to learn the relationship between the features 
of the imagery and the crop types, enabling it to classify the type of crop present in unseen 
data accurately. 

Classification and Accuracy Assessment 

The trained model was applied to classify the entire image or image collection, predicting the 
crop type for each pixel. This step involved processing the satellite images through the model 
to assign a crop label to every pixel based on the learned patterns during training. This process 
transforms the raw satellite imagery into a classified map showing the distribution of different 
crops across the area of interest. 

The model's performance was evaluated using the validation data. Key metrics were 
calculated to assess the accuracy of the model, including overall accuracy (the proportion of 
total pixels correctly classified), producer's accuracy (the accuracy for each crop class from 
the perspective of the data producer, indicating the likelihood that a certain class is correctly 
classified), and user's accuracy (the proportion of pixels classified into a certain class that 
were correctly classified, indicating the reliability of the model's classification for each class). 
This step is critical for understanding the model's strengths and weaknesses and for identifying 
areas where model performance might be improved. 
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Export Data 

The classified data was exported as point shapefile for further analysis, which included the 
validation of the data during a workshop and its incorporation into the automated Climate Risk 
and Vulnerability Assessment (CRVA) system. 
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Annex 4. The Automated CRVA Tool 

The CRVA system was architected to provide a holistic evaluation of climate risk vulnerabilities 
through an automated, multidisciplinary approach. The methodology synthesizes a vast array 
of data sources, leveraging sophisticated programming languages and analytical tools to 
automate the assessment process. 
Following the DA-AMIA CRVA framework and methodology for crops, the automated system 
was designed integrating the three components of vulnerability: exposure to climate hazards, 
the sensitivity of crops to climate change, and the adaptive capacity of local communities: 

Exposure Assessment utilizes spatial analysis to quantify the risk posed by various climate 
hazards, including but not limited to typhoons, floods, droughts, and sea-level rise. The 
assessment draws upon historical climate event data and predictive modeling to determine 
the frequency, intensity, and geographic distribution of these hazards. 
 
Sensitivity Analysis is conducted using the Maximum Entropy (MaxEnt) modeling approach 
to predict the climatic suitability of key agricultural crops under future climate scenarios. This 
component employs an ensemble of Global Circulation Models (GCMs) to project 
environmental variables, such as temperature and precipitation changes, that influence crop 
viability. The sensitivity analysis is vital in identifying crops at risk of reduced suitability due to 
climatic shifts, informing adaptive agricultural practices. 
 
Adaptive Capacity Evaluation examines the resilience of communities to climate impacts 
through a comprehensive set of indicators encompassing economic, natural, human, physical, 
and institutional capitals. This assessment is informed by current and projected socio-
economic data, infrastructure, health, and educational resources, as well as governance and 
policy frameworks that influence the ability of communities to respond to climate change. 
 
The automation of the CRVA process is enabled by a robust technological framework 
comprising several programming languages and tools: 

• PHP is utilized for server-side scripting, managing dynamic web content, and 
facilitating user interaction with the assessment platform. 

• Python serves as the backbone for data analysis, running MaxEnt models, and 
handling large datasets. Python's extensive libraries support sophisticated statistical 
analysis and machine learning tasks. 

• R is employed for its statistical computing capabilities, particularly in analyzing the 
adaptive capacity indicators and generating complex visualizations of vulnerability 
data. 

• Java ensures the system's backend stability, scalability, and security, managing the 
processing of large-scale data analyses. 

• JavaScript enhances the system's front end, enabling the dynamic presentation of 
assessment results through interactive maps and visualizations. 

 
Use of the Automated System on Future CRVAs 
 
The inception of the automated CRVA system represents a paradigm shift in climate risk 
assessment methodology, transitioning from manual, labor-intensive processes to a 
streamlined, automated, and data-driven approach. This shift is underscored by several key 
advancements: 
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• Consistency and Accuracy: The automated system ensures methodological 
consistency across different assessments, reducing human error and increasing the 
reliability of vulnerability analyses. 

• Efficiency and Scalability: Leveraging advanced computing and analytical models 
allows for rapid processing of complex data sets, enabling timely updates and scalable 
assessments across broader geographical regions. 

• Comprehensive Data Integration: Automated data handling and integration 
capabilities facilitate a holistic view of climate risks, combining diverse data sources 
into a coherent assessment framework. 

• Enhanced Decision-Making: The system provides stakeholders with detailed, 
accessible insights into climate vulnerabilities, supporting informed decision-making 
for climate adaptation and resilience-building efforts. 

By automating the CRVA process, the system not only enhances the efficiency and scope of 
vulnerability assessments but also significantly improves the quality and accessibility of 
information available for climate adaptation planning. This technological advancement marks 
a critical step forward in the global effort to mitigate climate risks and build resilient 
communities in the face of accelerating climate change. 
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Annex 5. Vulnerability indices for Lanao del Sur 

Municipality Hazard 
Index 

AC 
Index 

AC 
Inverted 

Banana Sens 
Index 

Banana 
Vulnerability 

Coconut 
Sens Index 

Coconut 
Vulnerability 

Rice Sens 
Index 

Rice 
Vulnerability 

Bacolod-Kalawi 0.37 0.28 0.72 0 0.5 0.5 0.5 0.25 0.55 

Balabagan 0.71 0.19 0.81 0.5 0.76 -0.25 0.76 1 0.86 

Balindong 0.2 0.38 0.62 1 0.57 1 0.57 0.5 0.47 

Bayang 0.55 0.05 0.95 1 0.96 1 0.96 1 0.96 

Binidayan 0.6 0.18 0.82 1 0.85 1 0.85 1 0.85 

Buadiposo-
Buntong 

0.33 0.32 0.68 1 0.66 1 0.66 1 0.66 

Bubong 0.42 0.47 0.53 1 0.53 1 0.53 0 0.33 

Bumbaran 0.75 0.25 0.75 -1 0.4 0.5 0.4 -1 0.4 

Butig 0.53 0.26 0.74 -0.5 0.44 1 0.44 -0.5 0.44 

Calanogas 0.52 0.37 0.63 1 0.65 1 0.65 1 0.65 

Ditsaan-
Ramain 

0 0.23 0.77 1 0.68 1 0.68 1 0.68 

Ganassi 0.6 0.03 0.97 1 0.99 1 0.99 1 0.99 

Kapai 0.58 0.36 0.64 1 0.68 1 0.68 0.5 0.57 

Kapatagan 0.97 0.43 0.57 0.5 0.58 -0.25 0.58 1 0.68 

Lumba-
Bayabao 

0.52 0.51 0.49 -1 0.1 0.5 0.1 -0.5 0.2 

Lumbaca-
Unayan 

0.54 0.11 0.89 1 0.9 1 0.9 1 0.9 

Lumbatan 0.41 0.21 0.79 1 0.79 1 0.79 1 0.79 

Lumbayanague 0.44 0.14 0.86 1 0.86 1 0.86 1 0.86 

Madalum 0.62 0.14 0.86 1 0.89 0.5 0.89 0.5 0.78 
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Municipality Hazard 
Index 

AC 
Index 

AC 
Inverted 

Banana Sens 
Index 

Banana 
Vulnerability 

Coconut 
Sens Index 

Coconut 
Vulnerability 

Rice Sens 
Index 

Rice 
Vulnerability 

Madamba 0.62 0.16 0.84 1 0.88 1 0.88 0.5 0.77 

Maguing 0.58 0.21 0.79 0.5 0.71 0.5 0.71 0.25 0.66 

Malabang 0.89 0.21 0.79 1 0.88 0.5 0.88 1 0.88 

Marantao 0.17 0.33 0.67 1 0.62 1 0.62 1 0.62 

Marawi City 0.32 1 0 1 0 1 0 1 0 

Marogong 0.49 0 1 1 1 0.5 1 1 1 

Masiu 0.42 0.34 0.66 1 0.66 1 0.66 0.5 0.55 

Mulondo 0.2 0.07 0.93 1 0.87 1 0.87 1 0.87 

Pagayawan 0.57 0.23 0.77 1 0.8 1 0.8 1 0.8 

Piagapo 0.65 0.28 0.72 1 0.77 1 0.77 1 0.77 

Picong 1 0.14 0.86 1 0.97 1 0.97 1 0.97 

Poona Bayabao 0.31 0.31 0.69 1 0.67 1 0.67 1 0.67 

Pualas 0.32 0.11 0.89 1 0.86 1 0.86 1 0.86 

Saguiaran 0.28 0.23 0.77 1 0.74 0.5 0.74 1 0.74 

Sultan 
Dumalondong 

0.41 0.25 0.75 1 0.74 1 0.74 1 0.74 

Tagoloan II 0.69 0.12 0.88 1 0.93 1 0.93 -0.25 0.67 

Tamparan 0.26 0.19 0.81 1 0.77 1 0.77 1 0.77 

Taraka 0.22 0.28 0.72 1 0.67 1 0.67 1 0.67 

Tubaran 0.48 0.17 0.83 1 0.83 1 0.83 1 0.83 

Tugaya 0.69 0.31 0.69 -0.25 0.48 0.5 0.48 0.25 0.59 

Wao 0.68 0.78 0.22 0.5 0.19 0.5 0.19 0 0.08 

 


